inhibit winding - ορισμός. Τι είναι το inhibit winding
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι inhibit winding - ορισμός

FABRICATION TECHNIQUE USING STRENGTH FIBRES IN A BINDING MATRIX
Pull winding

Compensation winding         
  • C. Cross section of DC motor with compensation windings showing magnetic flux due to armature windings.
  • E. Cross section of DC motor with compensation windings showing magnetic flux due to field and armature under heavy load with compensation windings.  The flux in the gap has been restored.
  • D. Cross section of DC motor with compensation windings showing magnetic flux due to field and armature under heavy load.  The flux in the gap has shifted.
  • B. Cross section of DC motor with compensation windings showing magnetic flux due to field windings.
WINDING IN THE POLE FACE OF A MOTOR
Compensation Winding
A compensation winding in a DC shunt motor is a winding in the field pole face plate that carries armature current to reduce stator field distortion. Its purpose is to reduce brush arcing and erosion in DC motors that are operated with weak fields, variable heavy loads or reversing operation such as steel-mill motors.
Coil winding technology         
  • Winding machine
  • 293x293px
  • 281x281px
  • 290x290px
  • Winding nozzle in winding position
  • Winding nozzle in position for termination
  • Orthocyclic winding of a round coil
  • Schematics of an open winding space using a flyer winding process for chained pools
  • Concept of an end plated insulated stator
  • Determination of the necessary space between teeth depending on the wire gauge (Source: Aumann GmbH)
  • Laminations after assembly into a stator
  • Stators with different winding topologies
  • Comparison of concentrated and distributed windings
  • Examples for different Designs of EC-Stators (Source: Technoexpert Dresden)
  • Example for a lead from for a full sheet metal package stator displaying several design characteristics
  • Verschieden isolierte Vollblechschnitte
  • fill factor
MANUFACTURE OF ELECTROMAGNETIC COILS
Coil Winding Technology; Orthocyclic coil winding; Electrical degrees
In electrical engineering, coil winding is the manufacture of electromagnetic coils. Coils are used as components of circuits, and to provide the magnetic field of motors, transformers, and generators, and in the manufacture of loudspeakers and microphones.
self-winding         
  • First automatic wristwatch, Harwood, ca. 1929 (Deutsches Uhrenmuseum, Inv. 47-3543)
  • CFB A1000 movement using a peripherally mounted geared ring with a mass segment made of tungsten
  • Automatic watch with rotor weight. Signed on the dial "Mazzi à Locarno", ca. 1778
  • date=August 2022}}
  • Illustration of an automatic watch with side weight from English patent No. 1249 "Recordon's Specification", 1780
TIMEKEEPING DEVICE THAT IS DRIVEN BY A SPRING THAT WINDS BY MOTION OF THE WEARER.
Self-winding watch; Emile Borer; Automatic Watch Winder; Watch winder; Kinetic watch; Automatic wristwatch; Self-winding; Manual-winding; Automatic movement; Automatic winding; Self-winding movement
¦ adjective (chiefly of a watch) wound by automatic means rather than by hand.

Βικιπαίδεια

Filament winding

Filament winding is a fabrication technique mainly used for manufacturing open (cylinders) or closed end structures (pressure vessels or tanks). This process involves winding filaments under tension over a rotating mandrel. The mandrel rotates around the spindle (Axis 1 or X: Spindle) while a delivery eye on a carriage (Axis 2 or Y: Horizontal) traverses horizontally in line with the axis of the rotating mandrel, laying down fibers in the desired pattern or angle to the rotational axis. The most common filaments are glass or carbon and are impregnated with resin by passing through a bath as they are wound onto the mandrel. Once the mandrel is completely covered to the desired thickness, the resin is cured. Depending on the resin system and its cure characteristics, often the mandrel is autoclaved or heated in an oven or rotated under radiant heaters until the part is cured. Once the resin has cured, the mandrel is removed or extracted, leaving the hollow final product. For some products such as gas bottles, the 'mandrel' is a permanent part of the finished product forming a liner to prevent gas leakage or as a barrier to protect the composite from the fluid to be stored.

Filament winding is well suited to automation, and there are many applications, such as pipe and small pressure vessel that are wound and cured without any human intervention. The controlled variables for winding are fibre type, resin content, wind angle, tow or bandwidth and thickness of the fiber bundle. The angle at which the fibre is wound has an effect on the properties of the final product. A high angle "hoop" will provide circumferential strength, while lower angle patterns (either polar or helical) will provide greater longitudinal / axial tensile strength.

Products currently being produced using this technique range from pipes, golf club shafts, reverse osmosis membrane housings, oars, bicycle forks, bicycle rims, power and transmission poles, pressure vessels, missile casings, aircraft fuselages, lamp posts and yacht spars.